C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Electrical Machine – I Subject Code : 4TE03EMC1 Semester : 3 Date : 20/03/2019

Branch: B.Tech (Electrical) Time : 02:30 To 05:30

Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
	a)	Define All day efficiency	
	b)	Define voltage regulation	
	c)	How may the direction of rotation of a d.c. motor be reversed?	
	d)	What is the function of interpoles?	
	e)	The field coils of D.C. generator are usually made of	
		(A) mica	
		(B) copper	
		(C) cast iron	
		(D) carbon	
	f)	The critical resistance of the d.c. generator is resistance of	
	-)	(A) Armature	
		(B) Field	
		(C) Load	
		(D) brushes	
	g)	Lap winding is suitable for Current ,	
	0/	d.c.generators.	
		(A) High, low	
		(B) Low, high	
		(C) Low, low	
		(D) High, high	
	h)	D.C. shunt motors are used for driving	
		(A) trains	
		(B)cranes	
		(C)hoists	
		(D)machine tools	
	i)	The commercial efficiency of a shunt generator is maximum when its	
	-)	variable losses equallosses.	
		(A) Constant	
		(B) Stray	
		(C) Iron	
		(D) Friction and windage	
	i)	A Step up transformer increases	
	J <i>)</i>	The stop up transformer mereuses	
			1

- (A) Voltage
- (B) Current
- (C) Power
- (D) Frequency
- **k**) In a d.c.generator, the effect of armature reaction on the main pole flux is to
 - (A) Reduce it
 - (B) Distort it
 - (C) Reverse it
 - (D) Both (a) and (b)
- I) If B is the flux density, I the length of conductor and v the velocity of conductor, then induced e.m.f. is given by
 - (A)Blv
 - $(B) Blv^2$
 - $(C) Bl^2 v$
 - $(D)BI^2V^2$.

m) Power transformers are designed to have maximum efficiency at (A) nearly full load

- (B) 70% full load
- (C) 50% full load
- (D) no load
- **n**) In a 3-phase induction motor, the rotor field rotates at synchronous speed with respect to
 - (A) stator
 - (B) rotor
 - (C) stator flux
 - (D) none of the above

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(14)

(14)

(14)

- Explain different types of D.C. generator. **(a)** (07) Explain the Construction Parts of D.C. Generator (1) Yoke (2) Pole (07) **(b)**
- Cores and Pole shoes (3) Commutator (4) Armature core (5) Brushes and bearing.

Q-3 Attempt all questions (14) Derive the torque equation of motor and also explain the armature and

- (07) **(a)** shaft torque. (07)
- **(b)** Explain the Speed control of D.C Shunt Motor.

0-4 Attempt all questions

- Derive the EMF equation for single phase transformer with help of (07) **(a)** sketch. (07)
- **(b)** Explain the Equivalent circuit of Transformer.

Q-5 Attempt all questions

- Define the term "slip" of induction motor. Draw and Explain the torque-(07) **(a)** slip characteristics of a three phase induction motor.
- Explain open and short circuit test for single phase transformer. While (07) **(b)**

making short circuit test, low voltage winding is always short circuited. Why?

Q-6	(a)	Attempt all questions A 30kVA, 2400/120 V, 50 Hz transformer has a high voltage winding resistance of 0.1 Ω and a leakage reactance of 0.22 Ω . The low voltage winding resistance is 0.035 Ω and the leakage reactance is 0.012 Ω . Find the equivalent winding resistance, reactance and impedance referred to the (i) high voltage side and (ii) the low voltage side.	(14) (07)
	(b)	Explain the Production of Rotating field of 3 Phase Supply for Induction	(07)
Q-7		Attempt all questions	(14)
	(a)	A 30kVA, 2400/120 V, 50 Hz transformer has a high voltage winding resistance of 0.1 Ω and a leakage reactance of 0.22 Ω . The low voltage winding resistance is 0.035 Ω and the leakage reactance is 0.012 Ω . Find the equivalent winding resistance, reactance and impedance referred to the (i) high voltage side and (ii) the low voltage side.	(07)
	(b)	Explain Swinburne's test to find the efficiency of a d. c. motor.	(07)
Q-8		Attempt all questions	(14)
	(a)	Explain in detail armature reaction in dc machines.	(07)
	(b)	Explain the methods of improving Commutation in D.C. Generator.	(07)

